Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccine X ; 10: 100155, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1851701
2.
Clinical Immunology Communications ; 2021.
Article in English | ScienceDirect | ID: covidwho-1458775

ABSTRACT

Imprinting of the specific molecular image of a given protein antigen into immunological memory is one of the hallmarks of immunity. A later contact with a related, but different antigen should not trigger the memory response (because the produced antibodies would not be effective). The preferential expansion of cross-reactive antibodies, or T-lymphocytes for that matter, by a related antigen has been termed the original antigenic sin and was first described by Thomas Francis Jr. in 1960. The phenomenon was initially described for influenza virus, but also has been found for dengue and rotavirus. The antibody dependent enhancement observed in feline coronavirus vaccination also may be related to the original antigenic sin. For a full interpretation of the effectivity of the immune response against SARS-CoV-2, as well as for the success of vaccination, the role of existing immunological memory against circulating corona viruses is reviewed and analyzed.

4.
Vaccines (Basel) ; 9(8)2021 Aug 03.
Article in English | MEDLINE | ID: covidwho-1341732

ABSTRACT

Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which has reached pandemic proportions. A number of effective vaccines have been produced, including mRNA vaccines and viral vector vaccines, which are now being implemented on a large scale in order to control the pandemic. The mRNA vaccines are composed of viral Spike S1 protein encoding mRNA incorporated in a lipid nanoparticle and stabilized by polyethylene glycol (PEG). The mRNA vaccines are novel in many respects, including cellular uptake and the intracellular routing, processing, and secretion of the viral protein. Viral vector vaccines have incorporated DNA sequences, encoding the SARS-CoV-2 Spike protein into (attenuated) adenoviruses. The antigen presentation routes in MHC class I and class II, in relation to the induction of virus-neutralizing antibodies and cytotoxic T-lymphocytes, will be reviewed. In rare cases, mRNA vaccines induce unwanted immune mediated side effects. The mRNA-based vaccines may lead to an anaphylactic reaction. This reaction may be triggered by PEG. The intracellular routing of PEG and potential presentation in the context of CD1 will be discussed. Adenovirus vector-based vaccines have been associated with thrombocytopenic thrombosis events. The anti-platelet factor 4 antibodies found in these patients could be generated due to conformational changes of relevant epitopes presented to the immune system.

5.
Expert Rev Clin Pharmacol ; 14(11): 1413-1425, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1334128

ABSTRACT

INTRODUCTION: Lung transplant patients are immunocompromised because of the medication they receive to prevent rejection, and as a consequence are susceptible to (respiratory) infections. Adequate vaccination strategies, including COVID-19 vaccination, are therefore needed to minimize infection risks. AREAS COVERED: The international vaccination guidelines for lung transplant patients are reviewed, including the data on immunogenicity and effectivity of the vaccines. The impact on response to vaccination of the various categories of immunosuppressive drugs, used in the posttransplant period, on response to vaccination is described. A number of immunosuppressive and/or anti-inflammatory drugs also is used for controlling the immunopathology of severe COVID-19. Current available COVID-19 vaccines, both mRNA or adenovirus based are recommended for lung transplant patients. EXPERT OPINION: In order to improve survival and quality of life, infections of lung transplant patients should be prevented by vaccination. When possible, vaccination should start already during the pre-transplantation period when the patient is on the waiting list. Booster vaccinations should be given post-transplantation, but only when immunosuppression has been tapered. Vaccine design based on mRNA technology could allow the design of an array of vaccines against other respiratory viruses, offering a better protection for lung transplant patients.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunocompromised Host , Immunogenicity, Vaccine/immunology , Lung Transplantation , Quality of Life , Vaccination , COVID-19/epidemiology , COVID-19 Vaccines/classification , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Humans , Immunocompromised Host/drug effects , Immunocompromised Host/immunology , Lung Transplantation/methods , Lung Transplantation/psychology , Practice Guidelines as Topic , SARS-CoV-2 , Vaccination/methods , Vaccination/standards
6.
Trends Immunol ; 41(10): 856, 2020 10.
Article in English | MEDLINE | ID: covidwho-734544
7.
J Infect Dis ; 222(8): 1265-1269, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-811305

ABSTRACT

We determined and compared the humoral immune response in patients with severe (hospitalized) and mild (nonhospitalized) coronavirus disease 2019 (COVID-19). Patients with severe disease (n = 38) develop a robust antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including immunoglobulin G and immunoglobulin A antibodies. The geometric mean 50% virus neutralization titer is 1:240. SARS-CoV-2 infection was found in hospital personnel (n = 24), who developed mild symptoms necessitating leave of absence and self-isolation, but not hospitalization; 75% developed antibodies, but with low/absent virus neutralization (60% with titers <1:20). While severe COVID-19 patients develop a strong antibody response, mild SARS-CoV-2 infections induce a modest antibody response. Long-term monitoring will show whether these responses predict protection against future infections.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Viral/blood , Antibody Formation , Betacoronavirus/isolation & purification , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL